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Abstract

Introduction to Algorithms [2] by Cormen, Leiserson, Rivest, and Stein
(CLRS) is one of the most widely used algorithms textbooks. Algorithms
in this textbook and others are mainly presented in a pseudocode format.
Executing pseudocode programs requires them to be translated to a high-
level programming language first. This can act as a barrier for students to
understand and reason about an algorithm. This project aims to develop
a software system to facilitate the seamless execution of CLRS pseudocode
and provide additional tooling expected of a high-level language

The Pseudo-Code Compiler (PCC) is a transpiler that generates exe-
cutable Python code from a pseudocode program. The software system
provides additional tools to improve the experience of developing and exe-
cuting pseudocode programs, including syntax highlighting, editor integra-
tion, and an interactive execution environment.

The resulting system allows users to write, run, and debug pseudocode
programs without requiring prior knowledge of other programming lan-
guages, reducing the cognitive overhead associated with language trans-
lation and supporting a more intuitive, interactive learning process.
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Chapter 1

Introduction

Pseudocode is a widely used tool for teaching algorithms. It allows pro-
grammers and students to express the structure and logic of an algorithm
in a clear format without becoming distracted by the syntactic style or im-
plementation details of a specific programming language. However, pseu-
docode cannot normally be executed by a computer, which limits its prac-
ticality for experimentation, testing, and interactive learning.

This project sets out to bridge that gap by creating a software system
capable of translating pseudocode programs into executable code in a high-
level programming language. The primary goal was to enable users to
seamlessly write and execute pseudocode algorithms without needing to
translate them manually into another language, such as Python or Java.
This makes it possible to experiment with pseudocode programs in a real
programming environment while preserving their simple, educational style.

To achieve this, the project involves designing a pseudocode language
matching the style used in the well-known algorithms textbook Introduc-
tion to Algorithms [2] by Cormen, Leiserson, Rivest, and Stein (CLRS).
A compiler-like system is developed to automate the process of translating
pseudocode programs into their equivalent Python code. The system in-
cludes additional features for syntax highlighting and interactive execution
to enhance the user experience.

Overall, the system demonstrates that executable pseudocode environ-
ments are both practical and beneficial in educational contexts. This project
lays the foundation for future enhancements such as performance analy-
sis tools and visualisation features for data structures, further supporting
learning and exploration in the study of algorithms.
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1.1 Motivation
Algorithms are a fundamental part of computer science education and

are typically introduced using pseudocode: a language-neutral notation de-
signed to express algorithmic ideas without the syntactic overhead of real
programming languages. However, pseudocode cannot be executed directly,
and students are often required to manually translate it into a high-level
language such as Python, Java, or C++ in order to test and explore its
behaviour.

This translation process introduces several challenges: differences in
language syntax, memory management, and naming conventions can ob-
scure the underlying logic of an algorithm, making it harder for students
to reason about its correctness and efficiency. The shift in context between
an abstract pseudocode description and its concrete implementation often
creates a disconnect that impedes learning.

This project is motivated by the idea of reducing the cognitive barrier
and enabling students to execute and interact with pseudocode directly
without needing to translate it manually. By providing a collection of tools
that bridges the gap between pseudocode and executable programs, this sys-
tem aims to support algorithm education in a more intuitive and accessible
way.
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Chapter 2

Background

2.1 What is Pseudocode?
Pseudocode is a way of writing algorithms using a structured, human-

readable format that resembles programming languages but does not fol-
low strict syntax rules. It serves as an intermediate step between natu-
ral language and actual code, making it easier to plan, communicate, and
understand algorithms without worrying about language-specific syntax.
Pseudocode makes use of common programming constructs, such as loops,
conditionals, and function calls. Pseudocode is suitable for situations where
clarity and readability are deemed more important than execution.

Figure 2.1: Pseudocode implementation of insertion sort. [2]
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2.2 Transpiler
Transpilation is a term describing a compiler whose output code is the

source code of some other high-level language. Rather than writing a com-
piler that translates code in the source language to architecture-specific
machine code, a transpiler will produce a string of valid source code in
some target language. This is also known as a source-to-source compiler or
transcompiler.

A transpiled language has the benefit of being able to reuse existing
tools of the target language, such as debuggers and runtimes for various
platforms. TypeScript is a prime example of a transpiled language. The
TypeScript compiler will parse its source code, perform semantic analysis
and type checking before transpiling the input program to a string of valid
JavaScript code. This technique allows developers to write and deploy
TypeScript code without requiring a TypeScript interpreter on the end
user’s machine.

This project involved the development of a transpiler with pseudocode
as its input language and Python as its target language. Transpiling pseu-
docode to Python brings the advantage of allowing pseudocode to execute
on any platform with a Python runtime.

2.3 Tree-Walk Interpreter
A tree-walk interpreter is a technique used in developing interpreted pro-

gramming languages in which code is executed immediately after parsing
it to an Abstract Syntax Tree (AST)2.4. To evaluate the code, the inter-
preter traverses a tree, one branch and leaf at a time, evaluating each node
as it goes. This implementation style is not widely used for general-purpose
languages since it tends to be slow.
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2.4 Abstract Syntax Tree
An Abstract Syntax Tree (AST) is a structured, hierarchical representa-

tion of a program’s syntax that abstracts away surface-level details such as
formatting and punctuation. Each non-leaf node in the tree corresponds to
a language construct, such as a statement, expression, or control structure,
and stores some associated metadata. Leaf nodes represent atomic values
like identifiers, literals, or operators. The AST forms the central interme-
diate representation shared across all stages of the compilation pipeline.

Figure 2.2 shows a simplified AST produced from parsing a polynomial
expression in pseudocode.

Figure 2.2: A partial AST produced from parsing a polynomial expres-
sion [7]
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2.5 Formal Grammar
A formal grammar describes which strings from a formal language’s

alphabet are considered valid according to the language’s syntax. A formal
grammar can be defined as a set of production rules for strings in a formal
language.

A formal grammar is a set of rules for rewriting strings along with a
starting symbol, from which rewriting begins. A formal grammar can be
thought of as a language generator.

If a grammar has the property that its production rules can be applied
to any non-terminal symbol regardless of its context, the grammar is said
to be a context-free grammar.

2.6 Lark
Lark[14] is a popular, general-purpose parsing library for Python. Lark

can efficiently parse any context-free grammar 2.5. Lark accepts a formal
grammar in Extended Backus-Naur Form defining the structure of a lan-
guage, and produces a parser that can transform a string in the provided
language to its AST 2.4 representation.

2.7 python-web-pdb
python-web-pdb[8] is a wrapper around Python’s native debugger, Pdb[15].

python-web-pdb provides a web-based graphical interface to Pdb. This li-
brary was forked and adapted for use with the pseudocode debugger de-
veloped for this project. Figure 2.3 shows python-web-pdb being used to
debug a simple program.

2.8 Unicodeitplus
Unicodeitplus [3] is a Python package used to convert simple LATEXexpressions

to their Unicode approximation. Table 2.4 shows a handful of examples of
how the library may be used.
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Figure 2.3: Python-web-pdb interface
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Input Unicodeitplus formatted output
$\pi$ π

$\alpha\beta$-prune αβ − prune
$K^0_S$ K0

S

Figure 2.4: An example of how unicodeitplus transforms LATEXto its Uni-
code representation

NAME: /[a-zA-Z0-9]+/
NUMBER: /[1-9][0-9]*/

Figure 2.5: Example of two colliding regular expressions.

2.9 Interegular
Interegular is a Python package for detecting collisions in regular ex-

pressions. This package was used to identify potential inconsistencies in
the pseudocode language’s grammar and pre-emptively address defects in
the parsing logic.

A regular expression collision occurs when two different regular expres-
sions can match the same input string in a way that causes ambiguity or
unintended matching behaviour. This is particularly important in lexical
analysis, where regex patterns are assigned to token types and matched
against the input.

Figure 2.5 shows an example of a collision where certain numeric strings
(e.g. 123) may be matched as either a NAME or a NUMBER token. Collisions
can be addressed by modifying one or both regular expressions or by as-
signing a priority to the tokens. In the example shown, the conflict can be
avoided by forbidding a NAME token to begin with a digit.
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Chapter 3

Analysis

3.1 Objectives
This project aims to facilitate the seamless execution of pseudocode al-

gorithms by creating a compiler to translate human-readable pseudocode
to a machine-readable representation. This should allow for a pseudocode
algorithm to be executed without the mental context shift to another pro-
gramming language. An end user of the system should not be required
to have prior knowledge of Python or other programming languages. The
pseudocode language implementation should hide as many implementation
details as possible, such as manual memory management and type check-
ing. Additionally, the outputted Python code should be understandable
and easily modifiable by the programmer if desired.

9



3.2 Language Analysis
This step involved a comprehensive review of Introduction to Algo-

rithms [2], identifying the syntactic structure and behaviour of the pseu-
docode language used. This included language keywords, control flow con-
structs, naming patterns, built-in functions, and more. This review helped
to discover the language features present and define a formal language spec-
ification upon which to build a compiler.

The review of the text highlighted numerous instances of ambiguous
procedures in pseudocode algorithms. One example of ambiguous logic is
in the procedure INTERVAL-SEARCH(T i) [2, Section 14, 4]. The statement
x ≠ T.nil and i does not overlap x.int is ambiguous and cannot be
faithfully executed without further context. Given the presence of this
ambiguity, it is not possible to create a system to accurately translate all
algorithms defined in the text to a machine-executable representation

Figure 3.1: Example of ambiguous logic in pseudocode.

3.3 Feasibility Analysis
CLRS pseudocode does not have a strict definition. A detailed, compre-

hensive survey of the features of the pseudocode notation should be under-
taken to identify a subset of the language that can be faithfully executed
without requiring modifications or sacrificing the program’s correctness.
This should then be used to define attainable expectations for the project.

Most C-like languages heavily restrict the set of valid strings to de-
note a variable or function identifier to Latin letters, digits and under-
scores. The grammar of CLRS pseudocode is much more permissive to the
point of introducing ambiguity to the language. For example, the strings
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”alpha-beta-prune” and ”α− β − prune” are considered valid identifiers
for a function or variable, or may also be interpreted as an arithmetic ex-
pression with three operands. Such limitations must be considered when
implementing the compiler 5.2.2.

3.4 System Requirements

3.4.1 User Stories

User stories are an essential part of requirements analysis because they
help define what the user needs and why in a clear, concise, and structured
manner. For this project, a set of user stories was created to determine the
features and capabilities a user would want from such a system.

1. “As a student learning algorithms, I want to write pseudocode in a
structured manner and execute it without manually converting it to
a high-level language.”

2. “As a reader of Introduction to Algorithms[2], I want to execute a
pseudocode algorithm described in the textbook without manually
translating it to another language.”

3. “As a programmer, I want to write and execute algorithms using a
variety of non-Latin characters in variable and function identifiers.”

4. “As a programmer, I want to insert non-Latin characters into my
program with a standard English keyboard.”

5. “As a student learning algorithms, I want to write pseudocode in a
structured format and have it executed as Python code, so that I can
test and verify my algorithm without manually converting it.”

6. “As a pseudocode programmer, I want to receive clear error messages
when my pseudocode has syntax errors, so that I can quickly correct
my mistakes and learn from them.”

7. “As a programmer debugging complex logic, I want to set breakpoints
at specific lines in my pseudocode, so that execution pauses where I
need to inspect values.”

8. “As a user debugging my pseudocode, I want to see the current val-
ues of all variables at any point, so that I can understand how my
algorithm is manipulating data.”
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9. “As a new user installing the software, I want to have a simple and
guided installation process, so that I can set up the system quickly
without technical difficulties.”

Based on the language analysis 3.2, feasibility analysis 3.3, and user
stories 3.4.1 described above, a set of functional and non-functional re-
quirements was defined for the project.

3.4.2 Functional Requirements

1. Pseudocode Execution

(a) The system must allow users to input pseudocode in a predefined
format.

(b) The system must translate valid pseudocode into its equivalent
in a high-level programming language.

(c) The system must detect and report syntax errors in the pseu-
docode.

2. Support for non-ASCII Characters

(a) The system must allow for the usage of non-ASCII characters in
variable and function identifiers.

(b) The system must allow users to input special characters with
a standard English keyboard, using a LATEX-like syntax (e.g.
\alpha → α).

3. GUI Debugger

(a) The system must provide a Graphical User Interface for debug-
ging pseudocode.

(b) The debugger must allow step-by-step execution of pseudocode.
(c) Users must be able to set breakpoints in their pseudocode pro-

gram.
(d) The system must display variable values at each step of execu-

tion.
(e) The system must allow users to pause, reset and resume execu-

tion.
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4. Installation Script

(a) The system must provide an installer for Windows, macOS and
Linux.

(b) The installer must install and verify all required dependencies.
(c) The installer must prompt the user to install optional dependen-

cies.

3.4.3 Non-Functional Requirements

1. Performance and Efficiency

(a) The time needed to translate a pseudocode program should cor-
relate linearly with the number of characters in the program.

(b) The debugger must update variable values and step execution
within 200 milliseconds of a user action

(c) The debugger process must not consume more than 200 MB of
RAM when debugging a program.

2. Usability

(a) The system must provide a syntax highlighting engine for Visual
Studio Code.

(b) Error messages must be clear and informative to the user.

3. Reliability and Availability

(a) The debugger must never cause execution to hang indefinitely.
(b) The system must not crash when handling long pseudocode pro-

grams (10,000+ lines).

4. Compatibility and Portability

(a) The system must be platform-independent. The system should
be compatible with all major desktop operating systems.

(b) The Python implementation must be compatible with Python
3.10 and later

(c) The system must support Windows 10+, macOS 14+ (Sonoma)
and Ubuntu 22.04+

13



Chapter 4

Design

4.1 Architectural Diagrams

4.1.1 System Use-Case Diagram

Figure 4.1: System use-case diagram.

14



4.1.2 Activity Diagram

Figure 4.2: High-level transpiler activity diagram.
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4.2 Language Grammar
The syntactic structure of the pseudocode language is defined using a

formal grammar 2.5 specification 8.1. This grammar distinguishes between
two types of elements: terminals and non-terminals.

Terminals represent the atomic units of syntax, such as keywords, oper-
ators, identifiers, and literals, which are recognised by the lexer during the
lexical analysis phase. These are the basic building blocks from which the
language is constructed.

Non-terminals, on the other hand, define combinations of terminals and
other non-terminals that form valid syntactic constructs in the language,
such as expressions, control structures, and function declarations. These
rules are used by the parser to build a structured representation of the
program, typically in the form of an Abstract Syntax Tree 2.4.

Together, the grammar’s terminal and non-terminal definitions provide
a complete specification of the language’s valid syntax and serve as the
foundation for both the lexer and parser components of the system.

4.3 Output Language
In designing the translation system, a central decision involved selecting

the target programming language to which pseudocode would be translated.
Two primary candidates were evaluated: Kotlin and Python.

Kotlin [4] is a modern, statically typed programming language. It can
be compiled to bytecode targeting the Java Virtual Machine (JVM) or to
native binaries on select platforms. Kotlin also benefits from an ecosys-
tem of tools for programmatic source-code generation, most notably, li-
braries such as KotlinPoet1 that simplifies the construction of structured
source code. Additionally, the JVM and Java Runtime Environment (JRE)
are widely available across platforms, offering a platform-agnostic execu-
tion environment, fulfilling the system’s requirements. However, Kotlin’s
static type system introduces challenges when translating from dynamically
typed pseudocode. This mismatch introduces additional challenges to the
translation system. Kotlin has some limited metaprogramming capabilities,
namely the ability to generate and execute Kotlin script files at runtime.

In contrast, Python is a high-level, dynamically typed, interpreted lan-
1KotlinPoet is a Kotlin API for generating .kt source files programmatically. See:

https://github.com/square/kotlinpoet
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guage that emphasises readability and minimal syntactic overhead. Its
syntax closely resembles common pseudocode conventions, simplifying the
translation process and making the generated code more accessible to stu-
dents and beginner programmers. Python’s dynamic typing eliminates the
complications in translating pseudocode to a statically-typed programming
language. Python supports robust metaprogramming features such as run-
time code evaluation and introspection, which provide flexibility in con-
structing and executing translated programs. Python’s metaprogramming
capabilities are particularly useful for the development of a pseudocode de-
bugger system. Additionally, Python was chosen as the implementation
language of the translation system. Thus, using Python as the system’s
output language would simplify the development process and minimise the
system’s dependency requirements.

Given these considerations, Python was selected as the output language
for the system. Its dynamic typing, high readability, and minimal setup
requirements make it well-suited for translating pseudocode algorithms into
executable code with minimal friction.

4.4 Lexer
The pseudocode lexer accepts the input string of source code and pro-

duces a sequence of token objects as output. Tokens are the atomic units
of syntax, each representing a minimal, meaningful component of the lan-
guage, such as keywords, identifiers, literals, or operators. These tokens
form the basic building blocks for the parser, which uses them to construct
higher-level syntactic structures in the form of a syntax tree.

4.4.1 Whitespace Indentation

A block statement is a syntactic construct that groups any number
of assignments, declarations or other statements into a single statement.
Traditionally, C-like syntaxes use curly braces to define a block statement.
Pseudocode, as defined in Introduction to Algorithms[2] uses leading whites-
pace to denote that a line of code belongs to a block statement. This
convention mirrors other high-level languages such as Python and Scala.

Handling of whitespace indentation presents the problem where some
occurrences of whitespace should be ignored by the compiler, while other
occurrences add semantic meaning to the program and must be handled
appropriately by the parser. As a solution, the compiler iterates over the
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token stream produced by the lexer and analyses the use of whitespace in
the program. Where appropriate, _INDENT and _DEDENT tokens are inserted
into the stream to mark the beginning and end of a block statement. All
other non-semantic whitespace is discarded.

4.4.2 Handling of Non-ASCII characters

While the source language supports a subset of the Unicode alphabet to
be used in variable and function identifiers in the form of LATEX expressions,
the target language (Python) does not allow the full Unicode character set
to be used in its syntax. Per the system requirements 1, a user should
be able to insert Unicode characters into a program with a standard En-
glish keyboard. Before transpilation, LATEX elements in identifiers will be
transformed to their Unicode approximation using unicodeitplus 2.8. The
system will produce a modified version of the pseudocode source with all
instances of LATEX fragments substituted with their Unicode approximation.
Before translating the input pseudocode to code in the target language, all
Unicode characters will be replaced with their ASCII. This step is crucial to
avoid producing a syntactically incorrect program in the target language.

4.4.3 Naming Collisions With Python Reserved Iden-
tifiers

Python 3.14 reserves a set of 35 unique identifiers 4.3 for use as keywords
within the language. As a consequence, a pseudocode program that uses one
of Python’s reserved words as an identifier will not yield a faithful transla-
tion if the identifier is not modified in the outputted Python code. Per the
system’s requirements, the user must not be exposed to implementation de-
tails of the compiler’s target language. Thus, it is not an appropriate design
choice to forbid the use of Python keywords for use as pseudocode identi-
fiers. To address this problem without exposing implementation details to
the user, the compiler will internally modify any identifier tokens whose
values match a Python keyword. This process is invisible to the user. Fig-
ure 4.4.3 shows a pseudocode snippet that declares a variable class whose
name is a reserved word in Python.
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class = "maths"
grade = 76

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try
as def from nonlocal while
assert del global not with
async elif if or yield

Figure 4.3: Python 3.14 reserved words [16]

4.5 Parser
The parser consumes the sequence of tokens produced by the lexer and

constructs a structured, tree-based representation of the program using the
language’s grammar. This representation is known as the Abstract Syntax
Tree (AST) 2.4.

In the AST, each non-leaf node corresponds to a production rule from
the grammar, representing higher-level syntactic constructs such as expres-
sions, statements, or function definitions. Leaf nodes, by contrast, corre-
spond to terminal symbols, such as identifiers, numbers, or string literals
defined in the grammar.

For this project, the pseudocode parser is generated by the Lark parsing
toolkit [14]. The use of a parser generator has many benefits over a bespoke,
handwritten parser. Namely, the ability to quickly adapt to changes and
additions to the language’s grammar while minimising the likelihood of in-
troducing bugs to the parser’s internal logic. Although parsers produced
by code generators such as Lark are generally slower than their handwrit-
ten counterparts, they maintain the same worst-case runtime complexity.
Additionally, pseudocode programs tend to be relatively small. For this
reason, the loss in performance was deemed acceptable.

Each AST node will also carry additional metadata, including the name
of the production rule it represents, along with the exact line and column
numbers from the source text where the rule was applied. This metadata
allows the reconstruction of the original pseudocode segment associated
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with a given node, which is useful for debugging and error reporting.

Traditional compilers will apply some optimisations to the tree repre-
sentation of the user’s program. Examples of such optimisations are dead
code elimination and compile-time evaluation or simplification of arithmetic
expressions. One of this project’s key objectives is to produce an executable
program that matches the provided pseudocode as closely as possible. An-
other requirement is that a user should be able to modify the outputted
program in the compiler’s target language if desired. For this reason, it
was decided not to apply optimisations that may alter the user’s provided
pseudocode.

4.6 Approaches
Two implementation strategies were considered for executing pseudocode

programs: a tree-walk interpreter 2.3 and a transpiler 2.2 to a high-level
language. Each approach was evaluated with respect to the system require-
ments outlined in Section 3.4.2.

4.6.1 Tree-Walk Interpreter

The first approach involves interpreting the program directly by travers-
ing its Abstract Syntax Tree (AST) at runtime. This method is relatively
simple to implement and removes the dependency on any external out-
put language and its compilation infrastructure. However, tree-walk in-
terpreters tend to be inefficient for larger programs, as the AST must be
evaluated repeatedly on each execution. Additionally, this approach would
require implementing custom debugging and execution tools specifically for
the pseudocode language, increasing development complexity.

4.6.2 Transpilation

The second approach is to transpile pseudocode to executable code in
a high-level target language. While this introduces a dependency on the
selected output language and its toolchain, it enables the system to reuse
existing compilers, debuggers, and runtime environments. This significantly
reduces the need to implement low-level execution and debugging features
from scratch. Moreover, transpiled programs typically benefit from the
performance and maturity of the target language’s ecosystem.
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Given the trade-offs outlined, the transpilation approach was chosen as
the basis for the system implementation due to its extensibility, performance
advantages, and alignment with the project’s requirements and objectives.

4.7 Transpiler
The transpiler is responsible for converting the program’s AST repre-

sentation into executable source code in the target language. This process
involves traversing the AST and generating corresponding code fragments
based on the structure and content of each node.

The transpiler will define a mapping from parse tree nodes to strings
of code in the output language. The mapping for a given tree node will
be determined by the name of the production rule it represents, stored
in the node’s metadata. If the transpiler encounters a node for which no
mapping exists, the error will be reported, and a default mapping will be
applied to the node. The transpiler may traverse the AST either from the
bottom-up 5.3.1 or top-down 5.3.2.

A bottom-up transpiler will begin by mapping leaf nodes to their string
representations. The resulting string(s) will be provided as arguments to
the translation functions of their respective parent nodes. One drawback to
this method is that the metadata associated with a node will be stripped as
it is transpiled. Alternatively, a top-down transpiler will begin its traversal
at the root node and explicitly call the translation functions of its children
as required. This approach preserves the metadata of nodes in the parse
tree.

4.7.1 Generating Debug-Friendly Transpiled Code

For the purpose of debugging pseudocode, the compiler must produce
an output with additional data, relating elements of the output code to
fragments of the pseudocode input. When the system is invoked with the
debug flag set, the output will contain metadata symbols along with the
Python translation of the input program.

Each AST node contains additional metadata, including the name of the
production rule it represents, as well as the exact line and column numbers
from the source text where the rule was applied. To produce a transpiled
output containing metadata for use by the debugger, each Python statement
in the output program contains a comment denoting the line number in
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1 | COUNT()
2 | for i = 1 to 10
3 | print i
4 |
5 | COUNT()
6 |

1 | def COUNT(): # l:1
2 | for i in range(1, 10 + 1): # l:2
3 | print(i) # l:3
4 | COUNT() # l:5
5 |

Figure 4.4: Example showing how lines in the output program are related
to lines of the source program by inserting metadata-containing comments
to the output program.

the source program from which the outputted line originates. Figure 4.4
highlights an example of metadata used by the debugger.

4.8 REPL
To support interactive program development, the system includes a

Read-Evaluate-Print Loop (REPL) for executing pseudocode statements
incrementally. The REPL allows users to input single lines of pseudocode,
which are immediately parsed, transpiled, and executed within a persistent
environment. Each iteration of the REPL performs four key steps:

1. Read: The system reads a line or block of input from the user.

2. Parse: The input is passed through the lexer and parser to generate
an AST representation.

3. Transpile and Execute: The AST is transpiled into target language
code, which is then executed in the context of a maintained runtime
environment.

4. Print: Any return values or output generated by the executed code
are displayed to the user.
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The REPL maintains a shared execution context across inputs, allowing
variables, functions, and control flow to persist between entries. This design
enables users to incrementally build and test algorithms without restarting
the interpreter or rewriting prior code.

To enhance usability, the REPL also provides basic error reporting. Syn-
tax errors encountered during parsing are caught and reported. Runtime
errors in the executed code are similarly surfaced, allowing users to debug
and correct issues interactively. This interactive environment is especially
well-suited for experimentation, instructional use, and iterative develop-
ment workflows.
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4.9 Debugger
The system includes an integrated debugger to support introspection

and step-by-step execution of pseudocode programs. This custom debug-
ger provides users with a familiar interface for tracing program execution,
inspecting variables, and diagnosing logic errors within the translated pseu-
docode.

The debugger is tightly integrated with the execution environment of
the translated code. When invoked, the debugger hooks into the program’s
runtime and allows users to pause execution at arbitrary points via break-
points. Once paused, users can step through individual lines of pseudocode,
examine the state of variables, and resume execution as needed.

The debugger will offer a graphical user interface to clearly display the
program’s current execution state by highlighting the current code location
and values of defined variables.

Overall, the debugger enhances the usability of the system for students,
educators, and developers by offering familiar and powerful debugging tools
tailored to the pseudocode abstraction.

Command Alias Function
step z Execute the current line. Calls to functions and

routines defined outside of the file scope will be
skipped. All other calls will be stepped into.

continue c Continue execution until a breakpoint is reached
or the program terminates.

break b Set a breakpoint at the selected line.
clear cl Clear all breakpoints at the given line.
globals Display all global variables as a collection of key-

value pairs.
locals Display all local variables as a collection of key-

value pairs.
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4.10 Interactive Execution Environment
In addition to the command-line debugger, the system provides a Graph-

ical User Interface (GUI) to the debugger. The graphical interface will fea-
ture the same commands and functionality as its CLI counterpart while
aiming to provide a more accessible and improved user experience.

The interface includes a source code viewer that displays the pseudocode
source with syntax highlighting. As execution progresses, the currently
executing line is visually highlighted, allowing users to follow the program’s
control flow in real time. Breakpoints can be set by clicking in the margin
beside a line of code, and a call stack view shows the current function
context.

A live variable inspector displays the values of all local and global vari-
ables in scope, updating reactively after each action. This allows users to
observe how the program state changes over time. An integrated output
console shows print statements, error messages, and other runtime feedback,
ensuring all relevant information is centralised within the interface.

The interactive execution environment is well-suited for learners, as it
bridges the gap between abstract pseudocode and concrete program be-
haviour.

4.11 Command-Line Interface
The system provides a Command-Line Interface (CLI) to facilitate the

translation of pseudocode files. The CLI serves as the primary entry point
to the transpilation tool, allowing users to specify input files, choose out-
put formats, and control the behaviour of the transpiler using structured
command-line arguments.

The CLI is designed to be intuitive and consistent with common command-
line interface conventions. It follows established patterns for argument pars-
ing, flag naming, and help message formatting, making it accessible to users
familiar with typical developer tools. This approach reduces the learning
curve and ensures the interface behaves as users expect, whether invoked
directly from the terminal or integrated into shell scripts and development
workflows. A full list of supported command-line arguments is shown in
figure 4.5

Usage information and help text are automatically generated and dis-
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Argument name Alias Function
--help -h Display a message to the termi-

nal outlining the supported CLI
options and usages.

--version -v Show the current version of the
transpiler

--debug -d Indicates that the transpiled out-
put should have debug symbols
attached.

--output -o Override the filesystem path to
which the translated output will
be saved.

--output-rendered-source -r Boolean-valued flag indicating
whether a formatted pseudocode
file should be produced with
LATEX fragments rendered to
their Unicode equivalents. True
by default

Figure 4.5: Supported command-line arguments.

played when invalid arguments are passed or the --help flag is provided,
improving accessibility for new users.

Overall, the CLI provides a lightweight yet powerful interface for manual
or automated use cases.
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4.12 Standard Library
To support common patterns and reduce boilerplate, the system includes

a standard library: a collection of predefined functions and data structures
available to all pseudocode programs. This standard library provides famil-
iar constructs for manipulating data while maintaining the simplicity and
readability of pseudocode.

The standard library is implemented as a predefined set of functions
and classes implemented in the transpiler’s output language. The standard
library will, by default, be imported into any program produced by the
transpiler. The standard library will be packaged alongside the transpiler
system itself. This ensures that all generated code remains self-contained
and portable.

By design, functions defined in the output language’s standard library
will also be callable from a pseudocode program.

The standard library includes:

• Basic data structures: A complete list of available data structures
is outlined in 4.12.

• Mathematical utilities: Functions for computing minimums, max-
imums and other numeric operations that are frequently used in al-
gorithmic pseudocode.

• String utilities: Functions for concatenation, slicing, searching, and
formatting text.

• Random number generators: Utility functions for the generation
of pseudorandom numbers.

Below is a list of all data structures provided in the system’s standard
library.

• Array

• Binary Tree

• Graph

• Heap

• Linked List
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• Doubly-Linked List

• Queue

• Stack

All standard library functions are designed to match the semantics typically
implied by textbook pseudocode, prioritising readability over language-
specific optimisations. This consistency allows users to focus on expressing
algorithmic logic clearly, without being burdened by low-level implementa-
tion details.

The standard library is structured modularly, allowing new functions or
structures to be added incrementally as needed.
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Chapter 5

Implementation

In the previous chapter, the architecture of the pseudocode compiler was
outlined. In this chapter, the details on how this was implemented will be
discussed.

5.1 Lexer
The system’s lexer is responsible for transforming the pseudocode source

string into a stream of token objects that represent the atomic syntactic
units of the language. The lexer is automatically generated using the Lark
parsing toolkit [14], based on a formally defined grammar 8.1.

Each token corresponds to a terminal symbol defined in the pseudocode
language grammar (see Listing 8.1). These include keywords, operators,
literals, and punctuation. The lexer also preserves source metadata such as
line and column numbers, which are attached to each token and propagated
through later compilation stages to support features like error reporting and
debugging.

[12]

Figure 5.1: Pseudocode tokenisation example.
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5.1.1 PostLex

Immediately after the input pseudocode string is tokenised, a series of
transformations are applied to the resulting token stream. These trans-
formations are encapsulated in classes that extend from the abstract class
PostLex. Each PostLex subclass implements the process method, which
defines how the input token stream is filtered, modified, or annotated.

This post-processing step allows the lexer to remain simple and declar-
ative while handling more complex or contextual adjustments separately.
For example, transformations can be used to:

• Insert or remove tokens based on surrounding context (e.g., remove
comment tokens).

• Replace or modify tokens (e.g., replace whitespace indentation with
explicit _INDENT and _DEDENT tokens.

• Annotate tokens with additional metadata required by later stages in
the translation pipeline.

The definition of the PostLex abstract class is shown below:
class PostLex(ABC):

@abstractmethod
def process(self, stream: Iterator[Token]) -> Iterator[

Token]:
pass

5.1.2 Chaining multiple PostLex operations

In order to support multiple PostLex operations, a wrapper class is used
to perform multiple transformations on the token stream sequentially.
class PostLexPipeline(PostLex):

def __init__(self, postlexers: list[PostLex]):
super().__init__()
self.postlexers: list[PostLex] = postlexers

def process(self, stream: Iterator[Token]) -> Iterator[
Token]:

output: Iterator[Token] = stream
for postlexer in self.postlexers:

output = postlexer.process(output)
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return output

5.1.3 Whitespace Indentation

The pseudocode language uses significant whitespace to denote block
structure 4.4.1, similar to Python. Identifying appropriate positions in the
token stream for _INDENT and _DEDENT tokens requires additional context
regarding leading whitespace on the current and surrounding lines that can-
not be implemented with a traditional Lexer. To address this, the lexer uses
a PostLex transformation that analyses line-level indentation and replaces
whitespace tokens with _INDENT and _DEDENT tokens where appropriate.

This transformation scans the token stream line by line, tracks changes
in indentation level, and indentation tokens to reflect increases or decreases
in indentation depth. These synthetic tokens are not part of the original
input but are essential for constructing the correct hierarchical structure in
the parser.

By separating indentation logic from the core grammar and lexer, the
system simplifies grammar design and improves maintainability. The use
of PostLex for this purpose makes the lexer pipeline both extensible and
language-aware.
MEANING-OF-LIFE()␣␣␣␣#␣<-non-significant␣whitespace
␣␣␣␣return␣42
#^^^significant␣whitespace

5.1.4 Support for non-ASCII characters

As discussed in 4.4.2, the system allows for non-ASCII characters to be
used in variable and function identifiers by enclosing a LATEX expression
between two $ characters (e.g. 2.4). Immediately after tokenising the in-
put, and before parsing, a PostLex 5.1.1 object will iterate over all tokens
produced by the lexer, and extract any fragments of LATEX-like syntax.
from unicodeitplus import replace

class UnicodeFragment:
def __init__(self, source: str):

self._ascii: str = source
@property
def ascii(self) -> str:
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return self._ascii
@property
def transformed(self) -> str:

return replace(self._ascii)

class Renderer(PostLex):
identifiers: set[tuple[str, str]]

def process(self, stream: Iterator[Token]) -> Iterator[
Token]:

for token in stream:
if token.type != "NAME":

yield token
continue

orig_value: str = token.value
fragments = split_unicode_fragments(token.value)
transformed: list[str] = list(map(

lambda x: x.transformed if isinstance(x,
UnicodeFragment) else x, fragments

))
formatted = "".join(transformed)
self._identifiers.add((orig_value , formatted))
yield token

With all instances of Unicode fragments extracted from the source code,
two actions are taken

• All LATEX expressions in the source code are replaced with their Uni-
code approximation. The resulting pseudocode source file is saved to
disk under the filename rendered_source.pc. This file is not guar-
anteed to be syntactically correct, but may be used for presentation
or demonstration purposes. The pseudocode string produced at this
stage will be shown in the debugger 5.4 interface.

• All LATEX expressions in the source are normalised to conform to the
target language’s naming syntax. This involves stripping all non-
alphanumeric characters except for underscore characters. As the
transpiler’s target language (Python) does not support the full Uni-
code alphabet, this step is necessary to avoid producing a syntacti-
cally invalid Python program. Edge cases, such as where a normalised
identifier begins with a digit, are accounted for.
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// input pseudocode program
$\alpha$ = 1.5

// rendered_source.pc
α = 1.5
# output Python program
alpha = 1.5

5.1.5 Collisions With Python Keywords

As discussed in 4.4.3, it is possible to declare pseudocode variables whose
names are reserved words in the target language (Python). To address this
issue without exposing implementation details of the target language, a
post-processing routine is applied to append the Unicode character ‿(un-
dertie) to any identifier whose name is a Python keyword. The undertie
character is not typable in LATEXmath mode without external packages and
thus cannot be inserted into a pseudocode program.
class KeywordNormalizer(PostLex):

UNDERTIE = '\u203F'
PY_KEYWORDS = {"assert", "async", "await", "class", ...}
def _normalize(self, token: Token) -> None:

if token.value not in self.PY_KEYWORDS:
return

orig = token.value
token.value = orig + self.UNDERTIE

def process(self, stream: Iterator[Token]) -> Iterator[
Token]:

for token in stream:
if token.type == "NAME":

self._normalize(token)
yield token
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[11]

Figure 5.2: Parse tree produced from the string some-numbers = 4 + 5 *
6.

5.2 Parser
The pseudocode parser is generated using the Lark parser generator [14],

which constructs a concrete parser from a context-free grammar 8.1 defined
in Extended Backus–Naur Form (EBNF). The parser consumes the stream
of tokens produced by the lexer and constructs a structured representation
of the program in the form of a syntax tree. This tree captures the syntactic
structure of the input while abstracting away lexical details. To simplify
downstream processing, the grammar applies tree-shaping transformations
via the inlining and aliasing features provided by Lark. In particular, cer-
tain rules that produce a single non-terminal child are inlined, effectively
collapsing them in the final parse tree. This results in a more compact
and semantically meaningful tree structure that is easier to traverse and
transform in later stages of the compilation pipeline.

Figure 5.2 demonstrates the parser and its tree-shaping transformations.
Certain nodes (expr, factor, etc.) with only one child have been inlined to
reduce the tree size and reduce the complexity of downstream processing.
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5.2.1 Parsing Algorithm

Lark supports a variety of parsing algorithms that offer different time
and memory trade-offs. There are the CYK, Earley and LALR parsing
algorithms.

• The CYK parsing algorithm can parse any context free grammar 2.5.
The algorithm’s worst-case runtime complexity is O(n3 · |G|), where n
is the length of the input string and |G| is the size of the grammar, in
terms of the number of production rules. CYK is the most computa-
tionally expensive, but it offers the advantage of being able to parse
any input, including grammars with ambiguity. Although the CYK
parsing algorithm is theoretically capable of handling any context-free
grammar, it proved impractical in the context of this project. When
used with Lark[14], the CYK parser exhibited unstable behaviour,
producing parsing errors non-deterministically and failing to process
input files exceeding approximately 1000 characters in length. These
issues stem from CYK being included in Lark primarily for legacy sup-
port and is not actively recommended for production use. As such, it
was excluded from consideration.

• The LALR (Look-Ahead LR) parsing algorithm is a deterministic,
bottom-up parsing technique used to parse a subset of context-free
grammars. It combines the parsing power of canonical LR parsers
with the efficiency of a smaller parse table, making it well-suited
for programming languages with well-structured, unambiguous gram-
mars. The LALR algorithm operates in linear time, with a worst-case
runtime complexity of O(n), where n is the length of the input string.
Among the parsers supported by Lark, LALR offers the best perfor-
mance but requires the grammar to be free of ambiguity.

• The Earley parsing algorithm can parse any context-free grammar 2.5,
including those that are ambiguous or left-recursive. Its worst-case
runtime complexity is O(n3) for arbitrary grammars, where n is the
length of the input string. However, for unambiguous grammars or
those with certain constraints, it can perform more efficiently, achiev-
ing O(n2) or even O(n) in best-case scenarios. Among the parsers of-
fered by Lark, Earley provides a good balance between expressiveness
and performance, making it suitable for grammars with complex or
unpredictable structure.
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parameters: name ("," name)*
funcdef: name "(" [parameters] ")" _NEWLINE function_body

arguments: expr ("," expr)*
funccall: name "(" [arguments] ")"

SUM-ARRAY(A, n)
total = 0
for i = 1 to n

total = total + A[i]
print total

nums = [1, 2, 3]
n = 3
SUM-ARRAY(nums, n)
print "done"

Figure 5.3: Example pseudocode program highlighting parsing ambiguity.

LALR is the most efficient parsing algorithm supported by Lark. To
parse a language using LALR, its grammar must be free of ambiguity. This
posed several challenges in parsing pseudocode programs, given the lan-
guage’s inherent ambiguity.

Figure 5.3 shows a pseudocode program and a snippet of the pseudocode
grammar for parsing function calls and definitions. The second-to-last line
highlights one example of unavoidable ambiguity in the pseudocode lan-
guage as described in Introduction to Algorithms [2], where it is not clear
whether the statement should be parsed as a function call or as a function
declaration.

Given the difficulties in adapting the pseudocode language to a LALR-
compatible grammar and the limited support for Lark’s CYK parser, the
Earley algorithm was chosen to implement the pseudocode parser. Despite
its poor worst-case time complexity, it is shown that the Earley runs in
approximately linear time when parsing pseudocode programs 6.2 described
in Introduction to Algorithms [2].
def __init__(self, grammar: str):

super().__init__()
self._grammar = grammar
self._renderer = Renderer()
self._lark = Lark(self._grammar, propagate_positions=True,
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start="file_input", postlex=PostLexPipeline([
PythonIndenter(), self._renderer , UnicodeFormatter(),

KeywordNormalizer()
]), parser="earley")

def parse(self, source_code: str) -> Tree:
# append trailing newline if not present
if source_code[-1] != "\n":

source_code += "\n"
ast = self._lark.parse(source_code)
# replace latex expressions with unicode to use in debugger
GUI and other presentations
# `ast` has already transformed latex expressions to ascii
identifiers: set[tuple[str, str]] = self._renderer.
identifiers
self._rendered_source = copy(source_code)
for orig, rendered in identifiers:

self._rendered_source = self._rendered_source.replace(
orig, rendered)

return ast

5.2.2 Disambiguating Hyphens in CLRS-Style Pseu-
docode

CLRS pseudocode frequently uses hyphens in function and variable iden-
tifiers. This presents a challenge in parsing, where it is not always clear if a
hyphen is used as a character in an identifier or as an arithmetic operator.
Figure 5.4 highlights an example of this behaviour, where the if condition
could be parsed as either a variable reference or as an arithmetic operation.

if foo-bar > 0
return TRUE

Figure 5.4: Unclear usage of the hyphen character in CLRS pseudocode.

To resolve this ambiguity, the language specification requires that arith-
metic operators be surrounded by whitespace, whereas hyphens within iden-
tifiers must appear without whitespace. This disambiguation rule ensures
that expressions like foo - bar are correctly parsed as arithmetic opera-
tions, while identifiers such as INSERTION-SORT or foo-bar remain valid
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and distinct. This convention is also consistent with most programming
language style guides, which recommend the use of surrounding whitespace
in binary operations to improve code clarity and readability. Enforcing this
rule in the lexer and grammar effectively eliminates the parsing ambigu-
ity without significantly impacting the expressiveness or readability of the
pseudocode.

5.2.3 REPL Parser

The Read-Evaluate-Print Loop (REPL) component uses a dedicated
parser that closely mirrors the main pseudocode parser. It is constructed
from the same grammar definition 8.1 and shares the same lexer and pars-
ing rules. However, to support the interactive nature of REPL input, the
parser is configured with a different start symbol: single_input instead
of file_input.

This alternate start symbol allows the REPL to accept and evaluate
partial or stand-alone statements, such as individual expressions, assign-
ments, or control structures, without requiring a complete source file. It
enables the parser to return valid results for incomplete programs or multi-
line inputs incrementally entered by the user.

Aside from the modified entry point, the REPL parser is functionally
identical to the main parser and produces the same abstract syntax tree
structure. This shared architecture ensures consistency between interactive
and file-based program execution.
class ReplParser(Parser):

def __init__(self, grammar: str):
self._lark = Lark(

grammar,
start="single_input",
postlex=PostLexPipeline([

PythonIndenter(),
UnicodeFormatter(),
KeywordNormalizer(),

]))

def parse(self, source_code: str) -> Tree:
return self._lark.parse(source_code)
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class Transpiler(Transformer):
def block_stmt(self, args: list[str]) -> str:

block = self._indent(args)
return "\n".join(block)

def stmt(self, args: list[str]) -> str:
return args[0] + ";\\n"

def expr(self, args: list[str]) -> str:
return args[0]

def term(self, args: list[str]) -> str:
return " + ".join(args)

def DEC_INTEGER(self, tok: Token) -> str:
return str(token.value)

Figure 5.5: Excerpt implementation of a bottom-up AST to Python tran-
spiler.

5.3 Transpiler
The transpiler implementation accepts the abstract syntax tree (AST)

produced by the parser 5.2 and recursively reduces each sub-tree to a cor-
responding string of code in the target language (Python). These code
fragments are then combined into a single string of executable Python code.

The lexer 5.1 and parser 5.2 together comprise the frontend of the
compilation pipeline, while the transpiler functions as the backend. This
frontend–backend distinction is made with the goal of allowing alternative
compiler frontends to reuse the same backend implementation. In practice,
this makes it possible for multiple dialects of the pseudocode language, or
even entirely different languages, to target a shared backend and produce
consistent output. This concept is discussed further in Section 7.3.1.

The transpiler is implemented as a Python class. For each production
rule and terminal symbol in the grammar, the transpiler defines a public
method, representing the mapping from nodes in the syntax tree to strings
of Python code. In this project, two implementations of the transpiler are
defined due to technical debt and time constraints.
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Figure 5.6: Demonstration of a bottom-up transpiler.

5.3.1 Bottom-Up Transpiler

The initial implementation of the transpiler traverses the tree beginning
with the leaf nodes and works up to the root of the AST. As mentioned
previously 4.5, leaf nodes in the syntax tree correspond to terminal symbols
that can be trivially mapped to their equivalents in the target language.
The mapping function for non-leaf nodes will take in as input the strings
produced by transpiling its children and transform them into a single string
of syntactically valid Python code. This process will be continued until
all nodes in the syntax tree have been mapped to Python code, and the
resulting string will be the output of the transpiler subsystem.

Figure 5.5 shows a demonstration of how this is implemented in Python.
Figure 5.6 provides a visual aid to demonstrate the transformation from an
abstract syntax tree to a Python program.
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5.3.2 Debug Transpiler

While the bottom-up transpiler described in the previous section effec-
tively generates syntactically valid Python code, it is not well-suited for
debugging purposes. The debugger subsystem requires additional meta-
data, such as line numbers and source positions, to be inserted into the
generated code. The bottom-up approach, which relies on recursively re-
ducing child nodes to strings before combining them, makes it difficult to
inject such metadata at the correct points in the transpilation process.

To address this limitation, a separate transpiler was implemented specif-
ically for use in debug mode. This debug transpiler uses a top-down visitor
pattern, traversing the abstract syntax tree starting from the root node
and visiting each child node recursively. This traversal strategy provides
more control over the transpilation process, allowing metadata and instru-
mentation code to be inserted as each node is encountered and before its
children are processed. As a result, it becomes possible to maintain an
accurate mapping between the original pseudocode source and the gener-
ated Python code, enabling the debugger to display meaningful runtime
information and source code references.

The decision to adopt a top-down approach for the debug transpiler
was influenced by both technical debt and time constraints. Retrofitting
the bottom-up transpiler to support debug metadata would have required
significant refactoring. Although this introduces duplication with two im-
plementations of the transpiler, the logic can be refactored in the future to
adhere to best practices for code duplication.
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class DebugTranspiler(Interpreter , PccTranspiler):
def __line_marker(self, tree: Tree) -> str:

return f" # l:{tree.meta.line} "

def block_stmt(self, tree: Tree) -> str:
return self._indent_all_lines("\n".join(self.

visit_children(tree)))

def stmt(self, tree: Tree) -> str:
return self.visit(tree.children[0]) + ";\n"

def expr(self, tree: Tree) -> str:
return self.visit(tree.children[0])

def funcdef(self, tree: Tree) -> str:
func_name , parameters , body = self.visit_children(tree)
if parameters is None:

parameters = ""
return \

f"def {func_name}({parameters}):" + f"{self.
__line_marker(tree)}\n" \

+ body + "\n"

5.4 Debugger
The system’s debugger, PccDb, is implemented as a subclass of Python’s

built-in debugger, Pdb[15]. The main challenge experienced when imple-
menting the pseudocode debugger involved communicating with Pdb, and
exchanging data between the debugger process and the program process.
Rather than exposing a set of public methods to facilitate information ex-
change, Pdb accepts debugger commands to be issued via the process’ stan-
dard input. The outputs from Pdb commands will then be written to the
process’ standard output. Alternatively, some commands may be issued to
Pdb by modifying the private internal state of the Pdb object, however, this
is not the recommended usage and is subject to change in future versions
of Python.

The extension to Pdb acts as a wrapper around the built-in Pdb inter-
face. A number of public methods are defined to manage the interactive
execution of a pseudocode program. The public methods are then mapped
to Pdb commands that will be issued to the debugger, either via the process’
standard input or by inserting them into Pdb’s internal command queue.
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The debugger is presented to the user in the form of a web-based graph-
ical user interface. Upon invoking the debugger, a local web server will be
spawned. The web server exposes several endpoints to provide static as-
sets and exchange data between the client web browser and the underlying
debugger system.

5.4.1 Web-Based Debugger

To implement a graphical user interface to the pseudocode debugger, an
existing library, Web-Pdb 2.7, is used. For this project, Web-Pdb is forked
and adapted to aid in debugging pseudocode programs. Upon launching the
debugger, the user interface is opened in the user’s browser, static HTML,
CSS and JavaScript assets are received from the server, and a WebSocket 1

connection is established between the browser and the underlying debugger
process. The WebSocket is the primary mode of communication between
the client and the debugger.

Commands are issued by the client to Pdb via the WebSocket connec-
tion. Dynamic data is transferred from the server to the client via the
endpoint /frame-data. The data shared through this endpoint includes:

• Source code listing.

• Current execution line.

• File and directory name of the executing program.

• Local and global variables and their current values.

• Line numbers of all active breakpoints.

1WebSocket is a computer communications protocol, providing a simultaneous two-
way communication channel over a single TCP connection.
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Figure 5.7: Pseudocode debugger use-case diagram

5.5 Public API
The system features a public API for invoking the transpiler. The API

is implemented with the user experience in mind. Care is taken to follow
widely accepted conventions for such command-line interfaces.

The CLI is implemented using a library called click[13]. Click is a
Python package to create rich command-line interfaces by providing tools
for argument parsing and automatic help message generation. The com-
mand line arguments and options implemented match those defined in 4.5.
@click.command(help=usage())
@click.option("-v", "--version", type=click.BOOL, default=False

, is_flag=True)
@click.option("-h", "--help", type=click.BOOL, default=False,

is_flag=True)
@click.option("-d", "--debug", type=click.BOOL, default=False,

is_flag=True)
@click.option("-o", "--output", type=click.STRING, default="./

out/output.py")
@click.option("-r", "--output-rendered -source", type=click.BOOL

, default=True)
@click.argument("source_file_path", type=click.STRING, default=

"")
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def main(version: bool, help: bool, debug: bool, output: str,
source_file_path: str, output_rendered_source: bool):
if help:

print(usage())
sys.exit(0)

if version:
print("Pseudo-Code Compiler , version 1.0.0")
sys.exit(0)

if not source_file_path:
print("Error: No source file provided")
print(usage())
sys.exit(1)

...

# Example usage
python pcc.py -d src/linked_list.pc

5.6 IDE Support for Pseudocode Program-
ming

To improve the user experience when writing and executing pseudocode
programs, a Visual Studio Code extension was developed. The extension
provides syntax highlighting, basic syntax awareness, and editor integration
tailored specifically to the pseudocode language used in this project.

Syntax highlighting is implemented by defining regular expression pat-
terns that capture the key syntactic constructs of the pseudocode language.
These patterns are mapped to semantic token types, which are then styled
by the editor according to the user’s selected colour scheme.
{

"comments": {
"patterns": [{

"name": "comment.line",
"match": "\\/\\/.*\\n"

}]
},

"keywords": {
"patterns": [{

"name": "keyword.control.pseudocode",
"match": "\\b(a|array|be|downto|else|for|if|let|new|print

|repeat|return|to|until|while)\\b"
}]

},
"numbers": {
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"patterns": [{
"name": "constant.numeric",
"match": "-?[0123456789]+"

}]
},

}

In addition to syntax highlighting, the extension integrates with sev-
eral editor features to enhance the programming experience. These include
automatic closing of brackets and quotation marks, support for inserting
and removing line comments through editor shortcuts, and bracket pair
highlighting.
{

"comments": {
// symbol used for single line comment.
"lineComment": "//",

},
// symbols used as brackets
"brackets": [

["{", "}"],
["[", "]"],
["(", ")"]

],
// symbols that are auto closed when typing
"autoClosingPairs": [

["{", "}"],
["[", "]"],
["(", ")"],
["\"", "\""]

],
// symbols that can be used to surround a selection
"surroundingPairs": [

["{", "}"],
["[", "]"],
["(", ")"],
["\"", "\""]

]
}
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5.7 Installation Script
To assist users in installing the transpiler and its dependencies, a shell

script is provided to automate the installation process. In order to ensure
compatibility with all major operating systems, as outlined in the system
requirements 3.4.2, two installation scripts were developed: a PowerShell
script for Windows systems and a POSIX-compatible shell script for macOS
and Linux platforms.

The actions taken by the installation script are as follows:

• Ensure Python version 3.10 or later is installed on the host machine.

• Clone the latest release of the pseudocode compiler repository from
GitHub.

• Prompt the user to optionally create a Python virtual environment
to encapsulate the project’s dependencies

• Install any runtime dependencies for the project.

• Prompt the user to install the Visual Studio Code extension 5.6 to
enable pseudocode syntax highlighting.

• If desired, clone the extension from GitHub to VSCode’s extensions
directory.
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Chapter 6

Evaluation

6.1 Testing
For the purpose of verifying the correctness and reliability of the sys-

tem, two primary testing methods are employed: unit testing 6.1.1 and
end-to-end testing 6.1.2. Unit testing is used to validate the behaviour of
individual components in isolation. These tests ensure that each part of
the system functions correctly under a variety of controlled input scenarios.
End-to-end testing, on the other hand, is used to assess the behaviour of the
system as a whole by running complete pseudocode programs through the
entire compilation and execution pipeline to verify that the final outputs
match expected results. Together, these complementary methods provide
confidence in both the internal correctness of the system’s components and
its overall functionality in realistic usage scenarios.

6.1.1 Unit Testing

Many unit tests are implemented to test the functionality of the soft-
ware system and its components. The unit testing suite for this project
is implemented using Python’s built-in unittest framework. This deci-
sion was made to prioritise simplicity, portability, and ease of integration
within the existing Python ecosystem. As unittest is included in the
Python standard library, it eliminates the need for an additional third-
party dependency, ensuring that the project remains lightweight and easily
installable across different systems. Generally, unit tests are defined on a
per-class basis, where each class defined in the implementation will have an
associated suite of unit tests.
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class TestUnicodeFragment(unittest.TestCase):
def test_split_unicode_fragment(self):

source: str = r"alpha-$\beta$-gamma-$\delta$"
fragments: list[str | UnicodeFragment] =

split_unicode_fragments(source)
self.assertEqual([

"alpha-",
UnicodeFragment("\\beta"),
"-gamma-",
UnicodeFragment("\\delta"),

], fragments)

Figure 6.1: Example unit test with Python’s unittest module.

The pseudocode parser 5.2 is created using the Lark [14] package, which
provides its own suite of comprehensive unit tests. As such, no additional
unit tests are defined for the parser. Instead, the parser is evaluated in the
system’s end-to-end testing 6.1.2.

6.1.2 End-to-End Testing

In addition to unit testing individual components, a series of end-to-end
tests 6.2 are provided to verify the correctness of the system as a whole.
These tests validate the entire workflow, from reading pseudocode input to
generating executable Python code.

Each end-to-end test consists of a pseudocode algorithm described in
Introduction to Algorithms [2] and a hand-written Python translation of
the algorithm. The hand-written Python implementation is taken to be
correct for all possible inputs. The testing framework invokes the transpiler
on the pseudocode file to produce a Python translation. Both the hand-
written and automatically generated Python programs are evaluated on a
collection of test inputs. It is expected that the programmatically generated
Python code should produce the same output as the hand-written program
for all inputs. The test case is reported as a failure if the two programs
differ on any input.

By simulating real-world usage scenarios, these tests provide a high level
of confidence in the correctness and robustness of the system’s behaviour.
This approach ensures that changes to individual components do not intro-
duce regressions or break the overall functionality of the system.
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Algorithm Reference Pass/Fail
Insertion Sort [2][ Chapter 2.1] Pass
Matrix Multiply [2][ Chapter 4.1] Pass
Heap Sort [2][ Chapter 6.4] Pass
Quick Sort [2][ Chapter 7.1] Pass
Counting Sort [2][ Chapter 8.2] Pass
Minimum [2][ Chapter 9.1] Pass
Heap Push/Pop [2][ Chapter 6.3] Pass
Queue Operations [2][ Chapter 10.1.3] Pass
Linked List Operations [2][ Chapter 10.2] Pass
Hash Table (Chained Hashing) [2][ Chapter 11.2] Pass
Binary Search Tree [2][ Chapter 12] Pass
Depth-First Search [2][ Chapter 20.3] Pass
Breadth-First Search [2][ Chapter 20.2] Pass
Dijkstra’s Algorithm [2][ Chapter 22.3] Pass

Figure 6.2: Algorithms used for end-to-end testing

6.2 Parsing Benchmark
The system’s non-functional requirements 3.4.3 define that the system

must parse a pseudocode program in linear time with respect to the number
of characters in the source. A series of benchmarks were conducted to
evaluate the performance of the parser. The benchmark measures the time
taken to parse pseudocode programs of varying sizes, providing insight into
the efficiency of the selected parsing strategy and its suitability for different
input categories.

The benchmarks were performed using a collection of pseudocode pro-
grams taken from Introduction to Algorithms [2], ranging from small ex-
amples containing only a single statement, to larger programs consisting of
thousands of characters. Each program was parsed multiple times to obtain
an average parsing time and account for variability in system performance.

The benchmark was performed using both the CYK and Earley pars-
ing algorithms. However, the CYK parser would fail to parse larger pro-
grams with more than approximately one thousand characters. Figure 6.2
shows the results of the benchmark on both parsing algorithms.

The results of the benchmark indicate the CYK parser being slightly
more performant on small programs, although it becomes inefficient on
larger inputs and fails outright to parse sufficiently large programs. Addi-
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tionally, the CYK implementation bundled in Lark [14] is not recommended
for production use, as discussed previously 5.2.1. For these reasons, the
CYK parsing algorithm was not used in the system implementation.

The benchmark validates the practicality of the Earley parser for this
system, verifying its conformance to the system requirements and its ability
to handle real-world pseudocode programs efficiently within the intended
usage context.

6.3 User Evaluation
In addition to technical validation through automated tests, a user eval-

uation was conducted to gather qualitative feedback on the usability and
functionality of the system from a practical perspective. The goal of this
evaluation was to assess how effectively the system supports users in writ-
ing, executing, and debugging pseudocode programs.

A small group of participants, consisting of computer science students,
were invited to use the system and perform a set of predefined tasks. These
tasks included writing simple pseudocode programs, executing them using
the transpiler and interactive execution environment, and exploring the
integrated Visual Studio Code extension for syntax highlighting and editor
integration. Participants were given a brief tutorial on the system’s usage
and documentation, after which they completed the tasks independently.

Participants were asked to provide feedback on their experience through
an informal questionnaire and discussion. Questions asked included the ease
of writing and running pseudocode, the clarity of error messages and debug
output, and the system’s overall usability. The full list of questions asked is
provided below. Unless specified otherwise, questions were multiple-choice,
with the options Strongly Disagree, Disagree, Neutral, Agree, Strongly Agree

• ”Have you taken, or are you currently taking a course on introductory
programming?” (Yes/No)

• ”Have you taken, or are you currently taking a university-level course
on algorithms?” (Yes/No)

• ”Have you ever worked professionally in software development or a
related field?” (Yes/No)

• ”The software was easy to install”
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[10]

[9]

Figure 6.3: Time (ms) to parse a pseudocode program with respect to its
character count.
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• ”Did you use a VSCode extension to provide syntax highlighting for
*.pc files?” (Yes/No)

• ”The syntax highlighting helped in reading and reasoning about pseu-
docode.” (optional)

• ”The syntax highlighting was helpful in identifying syntactical errors
in a pseudocode program.” (optional)

• ”The pseudocode language was intuitive to understand.”

• ”The pseudocode language was intuitive to program with.”

• ”The pcc command-line interface was easy to work with.”

• ”The Interactive Execution Environment was easy to use.”

• ”The Interactive Execution Environment was helpful in understand-
ing algorithms described in the textbook.”

• ”Are there any missing features you believe would improve the com-
piler or execution environment?” (short paragraph, optional)

• ”Criticisms of the software system.” (short paragraph, optional)

• ”General comments on your experience with the software system.”
(short paragraph, optional)

Figure 6.4 shows the responses received for a subset of the questionnaire.

When users were asked about missing features they believed would im-
prove the software system, two responses were given.

• “Cheat sheet of all pseudocode syntax”

• “The installation script of the environment works extremely well, a
quick setup guide to problem-solve any existing issues might be an
added bonus”

When asked for general comments on the software system, the following
responses were received from users.

• “Very interesting, and impressive”
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Question Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

”The software was easy to
install.”

1 0 0 2 2

”The syntax highlighting
helped in reading and rea-
soning about pseudocode.”

0 0 1 2 0

”The syntax highlighting
was helpful in identifying
syntactical errors in a pseu-
docode program.”

0 0 0 3 2

”The pseudocode lan-
guage was intuitive to
understand.”

0 0 1 3 1

”The pseudocode language
was intuitive to program
with.”

0 0 3 2 0

”The pcc command-line in-
terface was easy to work
with.”

0 0 2 2 1

”The Interactive Execution
Environment was easy to
use.”

0 0 1 3 1

”The Interactive Execution
Environment was helpful
in understanding algorithms
described in the textbook.”

0 0 0 4 1

Figure 6.4: Responses given to a subset of questions in the user feedback
survey.

54



• “Was able to create sorting algorithms with pseudocode, & the IEE
helped a lot with understanding the code”

• “Slight learning curve to understand how to use the system, however
once past the curve I found the system intuitive to use”

• “Was quite cool to go through the motions for displaying the responses
in a different way”

6.4 Appraisal
While the sample size was limited, the user evaluation offered valuable

practical validation of the system’s design and confirmed its suitability for
educational and instructional use cases. Overall, the feedback indicated that
users found the system beneficial as a learning tool. However, some par-
ticipants encountered difficulties during installation, both when attempting
manual setup and when using the provided installation script 5.7. These
issues primarily stemmed from their systems’ default Python interpreters
being linked to older versions that were not supported by the software.

This feedback highlighted an important area for improvement and was
taken into account when identifying opportunities for future work. In par-
ticular, it suggests the potential value of enhancing the installation process
to include automatic version detection and improved logic for reporting and
troubleshooting installation errors.

The results of the unit testing 6.1.1, end-to-end testing 6.1.2, and user
evaluation 6.3 suggest that the software system successfully achieves the
system’s requirements 3.4.2 and the objectives outlined in Section 3.1. Unit
tests confirm the correctness of individual components, ensuring that the
core compilation pipeline reliably transforms pseudocode into executable
Python code. End-to-end tests validated the overall workflow.

Feedback from the user evaluation further reinforced these findings. Par-
ticipants were able to write and run pseudocode programs without prior
knowledge of Python, and expressed that the syntax and layout conventions
felt intuitive for algorithmic work. Additionally, the generated Python code
was found to be readable and modifiable, meeting the objective of produc-
ing understandable output for users who wished to inspect or modify the
transpiled code.

While minor criticisms and difficulties were reported, these did not di-
rectly affect the system’s ability to meet its core functional goals. Overall,
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the combination of technical testing and practical user feedback indicates
that the system satisfies its intended purpose and serves as a functional,
accessible tool for executing pseudocode algorithms.

6.5 Limitations

6.5.1 Lack of Learning Resources

During user testing, one participant reported difficulties in learning the
syntax conventions of the CLRS-style pseudocode language 6.3. Another
user reported a learning curve to understanding and effectively using the
system 6.3. This sentiment was further echoed in informal discussions,
where some users expressed uncertainty about specific language constructs
and formatting requirements. Although the syntax closely follows estab-
lished conventions from Introduction to Algorithms [2], it became clear that
additional guidance would improve the user experience, particularly for
those without prior exposure to CLRS pseudocode notation.

This highlights a limitation in the system’s current documentation and
onboarding support. Addressing this would involve developing clearer,
beginner-friendly learning materials such as interactive examples, tutori-
als, or video walkthroughs, making the system more approachable for a
wider audience.

6.5.2 Limitations in LaTeX Symbol Translation

One of the requirements of the system is to allow programmers to embed
LaTeX expressions within pseudocode identifiers 2, which are then trans-
lated into visually similar Unicode or ASCII equivalents in the transpiled
output. This feature was designed to enhance the readability and expres-
siveness of pseudocode programs, particularly in domains where mathemat-
ical notation is commonly used.

However, a limitation of this approach is that not all LATEX symbols have
direct Unicode or ASCII equivalents. In particular, certain characters, such
as the superscript uppercase S, do not have a Unicode equivalent. Other
characters (e.g. superscript lowercase q) have equivalents in the Unicode
alphabet that are not supported in many fonts. In such cases, the system
substitutes an approximate ASCII representation.
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This inconsistency can lead to the occasional loss of visual clarity or ac-
curacy in the final translated program, especially when users rely on specific
notational conventions. Addressing this limitation would require expanding
the translation system by providing warnings for unsupported symbols or
integrating optional LaTeX rendering in the output environment. While
this feature is effective in most common use cases, it currently lacks com-
prehensive coverage for the full range of LATEX expressions that may be
encountered in pseudocode.
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Chapter 7

Conclusions

7.1 Reflection
I have learned many things throughout the design and implementation of

this project. This project has been a significant learning experience, offering
both technical and personal development opportunities. One of the most
valuable outcomes was gaining a practical understanding of compiler theory
and programming language design. While I had previously encountered
these topics in a theoretical context, implementing a working transpiler
from scratch allowed me to engage with real-world challenges and improve
my knowledge in the area.

Throughout the project, I also developed a much deeper knowledge
of Python than I had learned in previous programming modules, partic-
ularly in its modern language features and metaprogramming capabilities.
Working extensively with the Lark parsing toolkit [14] provided insight
into parser generation and offered the opportunity to contribute enhance-
ments to the open-source project. This experience improved both my tech-
nical abilities and my confidence in contributing to collaborative software
projects, which I intend to continue in the future.

In addition to technical skills, this project highlighted some areas for
personal growth, particularly in time management and project planning.
Some stages of the project involved more time than anticipated, which
impacted the available time for other features, such as advanced debugger
integration and runtime complexity estimation 7.3.3. I did not allocate
enough time to the report for this project, leading to stress in the days
leading up to the submission deadline. If I were to begin this project again,
I would ensure that work on the report was done iteratively alongside the
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implementation. This experience has emphasised the importance of early
prototyping, milestone setting, time management, and realistic scheduling
when managing complex software projects.

Overall, this project has enhanced my technical, problem-solving, and
organisational skills while providing valuable exposure to advanced Python
programming concepts. These skills and lessons will be highly applicable
in my future career.

7.2 How the Project was Conducted

Figure 7.1: A Gantt chart of the time taken to do each general task.

Work on the project began with an investigation into the pseudocode
language described in Introduction to Algorithms. Alongside the analysis of
the pseudocode language, research was conducted on the various approaches
to implementing the task at hand.

After the research phase, implementation of the project’s core compo-
nents began. This included implementing the parser 5.2, transpiler 5.3, and
debugger 5.4. Unit testing 6.1.1 was performed incrementally alongside the
core implementation, while end-to-end testing 6.1.2 and user evaluation 6.3
were left until a minimum viable product had been developed.

Towards the end of the development cycle, work began on the report.
After the SCSIT open day, all work done was focused on the report. If this
project were repeated, the report would be done alongside the implemen-
tation and testing stages to reduce the stress involved in writing the report
in April.

59



7.3 Future Work

7.3.1 Support For Alternative Pseudocode Dialects

The transpiler system can be divided into a logical frontend and back-
end. The frontend logic involves the tokenisation and parsing of code in
the input language (Pseudocode), while the compiler backend transforms
the program’s AST representation to an executable program in the output
language.

There is no standardised format for pseudocode. Sources will often use
differing notations to express the same logical concepts. As an example,
figure 7.2 highlights the syntactic differences between two dialects of pseu-
docode.

Given that the compiler backend accepts an abstract syntax tree pro-
duced by parsing a program, it can be considered language-agnostic. If
one were to develop a language frontend targeting another dialect of pseu-
docode, it would be possible to reuse the existing backend infrastructure
developed as part of this project.

This technique is common in programming language implementations.
For example, the LLVM project [5] provides a modular, reusable backend
that accepts an intermediate representation (IR) generated by different lan-
guage frontends, such as Clang for C/C++ or Swiftc for the Swift language.
Each frontend is responsible for parsing its source language and producing
a compatible intermediate representation, which is then processed by the
shared LLVM backend for optimisation and code generation. Adopting a
similar frontend–backend separation in this project opens opportunities for
supporting multiple pseudocode dialects in the future without requiring
modifications to the core backend logic.
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INSERTION -SORT(A, n)
for i = 2 to n

key = A[i]
// Insert A[i] into the sorted subarray A[1:i-1]
j = i - 1
while j > 0 and A[j] > key

A[j + 1] = A[j]
j = j - 1

A[j + 1] = key

i <- 1
while i < length(A)

x <- A[i]
j <- i
while j > 0 and A[j - 1] > x

A[j] <- A[j - 1]
j <- j - 1

end while
A[j] <- x
i <- i + 1

end while

Figure 7.2: Insertion Sort, as defined in Introduction to Algorithms[2], and
on Wikipedia [1]
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7.3.2 CLRS Pseudocode as a General-Purpose Pro-
gramming Language

Another direction for future work is the extension of the pseudocode
language, originally inspired by the style presented in Introduction to Al-
gorithms [2], into a fully-featured, general-purpose programming language.
While the current system is primarily designed to support algorithmic ex-
ercises and educational programs, expanding its capabilities would open up
new applications beyond educational use.

To achieve this, the pseudocode language could be extended with a
richer standard library, incorporating built-in routines for interacting with
the operating system, performing disk and network input/output, handling
cryptographic operations, and managing concurrency or parallelism. These
additions would allow users to write practical programs entirely in pseu-
docode without relying on transpiled Python code for low-level system in-
teraction.

Such enhancements would not only increase the expressive power of
the language but also provide an opportunity to experiment with how
algorithm-focused pseudocode can bridge the gap between high-level algo-
rithm design and real-world application development. This would turn the
pseudocode environment into a more versatile platform for both learning
and rapid prototyping, particularly in educational contexts where simplicity
and clarity are valued over raw performance efficiency.

Integrating these capabilities while maintaining the language’s minimal-
istic and approachable nature would be a key design challenge, requiring
careful language design decisions to balance expressive power, usability, and
consistency with the original CLRS pseudocode style.

7.3.3 Collection of Performance Statistics and Run-
time Complexity Estimation

An interesting opportunity for future work lies in extending the system
to collect performance statistics and provide runtime complexity estima-
tions for executed pseudocode programs. While the current implementation
focuses on correctness and usability, integrating performance monitoring
would enhance the system’s educational value by helping users develop an
intuition for time complexity and big-O notation.
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This could be achieved by instrumenting the transpiled Python code to
measure key runtime metrics, such as the number of fundamental opera-
tions performed. These statistics could be collected during program execu-
tion and reported alongside the program’s output, offering users immediate
feedback on the practical cost of their algorithms.

Additionally, by analysing control flow structures, recursion depth, and
loop iteration counts within the abstract syntax tree, the system could at-
tempt to estimate the runtime complexity of a given program in Big O
notation. Although such static analysis would have limitations to its accu-
racy and reliability, it could potentially provide valuable approximations in
simple cases.

Incorporating these features would not only enhance the capabilities
of the system but also align it more closely with the learning objectives
of algorithm and data structure courses, where understanding both the
correctness and efficiency of algorithms is essential.

7.3.4 Improvements to the Installation Process

It was reported during user evaluation 6.3 that a number of users found
difficulties in installing and configuring the software. If more time were
available, the installation script 5.7 would be rewritten as a single, cross-
platform Python script. This would remove the requirement to maintain
two scripts for both Windows and Unix-like systems. Additionally, a com-
prehensive troubleshooting guide would be created to aid in manual instal-
lation of the software, detailing common issues and their remedies, such as
incompatible Python versions and missing dependencies.

Implementing these changes would result in a lower barrier to entry for
users to obtain the software and an overall improved user experience.
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7.3.5 Visualisation of Data Structures

An area of significant potential for future development is the visual-
isation of data structures within the Interactive Execution Environment.
While the current implementation provides a graphical interface for in-
specting variable values, it does not yet support graphical representations
of complex data structures such as linked lists, trees, and graphs; instead,
such structures are shown as a primitive string representation.

Incorporating data structure visualisation would greatly enhance the
educational value of the system by providing users with intuitive, real-time
graphical representations of their program’s state. These dynamic visuali-
sations would update interactively as the program executes, helping users
better understand how data structures evolve during algorithm execution.

This capability would be particularly valuable for teaching algorithms
that rely heavily on dynamic data structures, such as tree traversals, graph
algorithms, and pointer-based manipulations. By making abstract struc-
tures visible and interactive, the system could improve comprehension and
reduce the cognitive load associated with mentally tracking complex pro-
gram states.
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Acronyms

API Application Programming Interface. 44

AST Abstract Syntax Tree. 4, 5, 19–22, 40, 60

CLI Command-Line Interface. 25, 44

GUI Graphical User Interface. 12, 25

JRE Java Runtime Environment. 16

JVM Java Virtual Machine. 16

PCC Pseudo-Code Compiler. i

REPL Read-Evaluate-Print Loop. 22, 38
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Chapter 8

Appendix

8.1 External Libraries Used
I used many external Python libraries to complete this project. Here is

a complete list of them.

Library License
Lark [14] MIT
Interegular [6] MIT
unicodeitplus [3] BSD 3- Clause
click [13] BSD
web-pdb [8] MIT

8.2 Pseudocode Compiler Grammar
This is the grammar used to generate the pseudocode parser using

Lark [14]. The grammar is described in Extended Backus-Baur Form 1.
// Copyright: (c) 2025, Colm Murphy <colmmurphy016@gmail.com>
// GNU General Public License v3.0+ (see COPYING or https://www

.gnu.org/licenses/gpl-3.0.txt)

single_input: _NEWLINE | simple_stmt | compound_stmt _NEWLINE
file_input: (_NEWLINE | stmt)*

funcdef: name "(" [parameters] ")" _NEWLINE function_body

1The grammar contains some additional syntactic sugar provided by Lark. An
overview of the syntax is provided in Lark’s documentation
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parameters: name ("," name)*

?stmt: simple_stmt | compound_stmt
simple_stmt: small_stmt (";" small_stmt)* [";"] _NEWLINE
?small_stmt: (expr_stmt | assign_stmt | flow_stmt | decl_stmt)
expr_stmt: test
assign_stmt: assign

?decl_stmt: struct_decl_stmt

struct_init_arguments: arith_expr ("," arith_expr)*
| arith_expr (":" arith_expr)

struct_decl_stmt: single_struct_decl
| multiple_struct_decl

struct_init: name ["[" struct_init_arguments+ "]"]
single_struct_decl: "let" struct_init name+ name
multiple_struct_decl: "let" struct_init ("and" struct_init)+

name+ name

?flow_stmt: return_stmt | print_stmt | error_stmt |
exchange_stmt

return_stmt: "return" test?
print_stmt: "print" test
error_stmt: "error" string
exchange_stmt: ("exchange" | "swap") atom_expr "with" atom_expr

?compound_stmt: if_stmt
| while_stmt
| for_stmt
| repeat_stmt
| funcdef

if_stmt: "if" test _NEWLINE block_stmt elifs else_?
elifs: elif_*
elif_: "else" "if" test _NEWLINE block_stmt
else_: else_block | else_inline
else_block: "else" _NEWLINE block_stmt
else_inline: "else" simple_stmt block_stmt?
while_stmt: "while" test _NEWLINE block_stmt
for_stmt: for_loop

| for_iter
for_loop: "for" name "=" test range_op test _NEWLINE block_stmt
for_iter: "for" "each" name~1..2 "in" expr _NEWLINE block_stmt

// first 'name' token should be discarded
!range_op: "to"

| "downto"
repeat_stmt: "repeat" _NEWLINE block_stmt "until" test _NEWLINE
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block_stmt: simple_stmt | _INDENT stmt+ _DEDENT

// alias for block_stmt
function_body: _INDENT stmt+ _DEDENT

assign: test "=" test

?test: comparison
| assign_expr

assign_expr: name "=" test

?comparison: expr (_comp_op expr)*

?expr: or_expr

?or_expr: xor_expr ("or" xor_expr)*
?xor_expr: and_expr ("xor" and_expr)*
?and_expr: shift_expr ("and" shift_expr)*
?shift_expr: arith_expr (_shift_op arith_expr)*
?arith_expr: term (_add_op term)*
?term: factor (_mul_op factor)*
?factor: unary_op factor | power

!unary_op: "+" | "-" | "!"
!_add_op: "+" | "-" | "|"
!_shift_op: "<<" | ">>"
!_mul_op: "*" | "/" | "mod" | "\\\\" | "&"
!_comp_op: "<" | ">" | "==" | ">=" | "<=" | "!=" | "in" | "not"

"in" | "is" | "is" "not"
!_power_op: "^" | "**"

?power: atom_expr (_power_op factor)*

?atom_expr: atom_expr "(" [arguments] ")" -> funccall
| atom_expr "[" test "]" -> getitem
| atom_expr "." name -> getattr
| atom

?atom: name -> var
| number
| string
| "{" [test ("," test)*] "}" -> set_literal
| "[" test ("," test)* "]" -> array_literal
| "(" test ")" -> grouping
| "NIL" -> const_nil
| "TRUE" -> const_true

70



| "FALSE" -> const_false

arguments: test ("," test)*

number: DEC_INTEGER | DEC_REAL
string: STRING

// other terminals

_NEWLINE: ( /\r?\n[\t ]*/ | COMMENT )+

%ignore /[\t \f]+/ // whitespace
%ignore /\\[\t \f]*\r?\n/ // LINE_CONTINUATION
%declare _INDENT _DEDENT

// more terminals

!name: NAME
// NAME: /[a-zA-Z$][a-zA-Z0-9'\-_^${}\\]*/
NAME: /([a-zA-Z_]([a-zA-Z0-9\-_']|\$[a-zA-Z0-9\-_'^{}\\]+\$)*)

|(\$[a-zA-Z0-9\-_'^{}\\]+\$)/
COMMENT: /\/\/[^\n]*/

%import common.ESCAPED_STRING -> STRING

DEC_INTEGER: /[1-9][0-9]*/
| /0+/

DEC_REAL: /[1-9][0-9]*\.[0-9]+/
| /0+\.0+/

Listing 8.1: Pseudocode grammar (Lark)
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